بحث عن المتجهات في المستوى الاحداثي
بحث عن المتجهات في المستوى الإحداثي، هو حديث رحلتنا اليوم، حيث أن المتجه عبارة عن أي عنصر له حجم واتجاه، من الناحية الهندسية، يمكننا أن نصور متجهًا على أنه مقطع خط موجه، طوله هو حجم المتجه ومع سهم يشير إلى الاتجاه، اتجاه المتجه يكون من ذيله إلى رأسه، وهو له أهمية كبيرة في المجالات العلمية المختلفة واليوم سوف نتعرف على تعريف المتجهات وأهميتها.
محتويات المقال
مقدمة بحث عن المتجهات في المستوى الإحداثي
تكون المتجهات مهمة في الملاحة حيث يتم إعطاء السرعة الفعلية للطائرة بالنسبة للأرض عن طريق السرعات المركبة للرياح (التي تحمل الطائرة كما لو كانت طائرة شراعية) بالإضافة إلى السرعة التي ستحملها الطائرة في الهواء الثابت، وبالتالي يجب أن يكون هناك اهتمام أكبر بالتطبيق العملي لها.
شاهد أيضًا: بحث عن تطوير مدينتك
تعريف المتجه
- المتجه عبارة عن كمية لها مقدار (حجم رقمي) واتجاه، هذا هو عكس العددية، وهي كمية لها فقط حجم وبدون اتجاه.
- لذلك، على سبيل المثال، قد تسير السيارة بسرعة 60 ميلًا في الساعة، هذه هي سرعة السيارة، وهي كمية عددية، لكن قد تكون سرعة السيارة 60 ميلًا في الساعة شمالًا، ولكي تكون سرعة، يجب أن يكون لها اتجاه.
- المسافة عبارة عن كمية عددية تخبرك إلى أي مدى تجولت في المنزل، مثلا 400 متر، نظرًا لأنه رقم قياسي، فإن الاتجاه الذي تقوم بتشغيله غير ذي صلة، الشيء الوحيد المهم هو إلى أي مدى سافرت.
- لكن الإزاحة هي كمية متجهة تقيس الفرق في وضعك من حيث بدأت إلى حيث انتهيت، وإذا انتهيت في نفس المكان الذي بدأت فيه، فإن الإزاحة تكون صفرية، يؤثر الاتجاه أو الاتجاهات التي تركتها على النزوح نظرًا لأن النزوح عبارة عن ناقل.
- يتم تمثيل المتجهات بشكل تخطيطي باستخدام سهم، يمثل السهم الطويل رقمًا كبيرًا ويمثل السهم الصغير رقمًا صغيرًا.
خصائص المتجهات
- المتجهات هما نفسهما إذا كان لديهم نفس الحجم والاتجاه، هذا يعني أننا إذا أخذنا متجهًا وقمنا بترجمته إلى موضع جديد (بدون تدويره)، فإن المتجه الذي نحصل عليه في نهاية هذه العملية هو نفس المتجه الذي كان لدينا في البداية.
- مثالان على المتجهات هما تلك التي تمثل القوة والسرعة، هناك الكثير من الكميات الرياضية المختلفة المستخدمة في الفيزياء.
- تشمل الأمثلة على ذلك السرعة والقوة والعمل والطاقة، غالبًا ما يتم وصف هذه الكميات المختلفة على أنها إما كميات “عددية” أو “ناقلات”.
الكميات الفيزيائية
- العددية هي الكمية التي يتم وصفها بالكامل بحجم فقط، حيث توصف برقم واحد فقط، وتتضمن بعض أمثلة الكميات العددية السرعة والحجم والكتلة ودرجة الحرارة والطاقة والوقت.
- والمتجه عبارة عن أي كمية لها مقدار واتجاه، كميات المتجهات مهمة في دراسة الحركة، بعض الأمثلة على كميات المتجهات تشمل القوة والسرعة والتسارع والإزاحة.
- كمية المتجه لها اتجاه وحجم، في حين أن العددية لها فقط حجم، ويمكنك معرفة ما إذا كانت الكمية عبارة عن ناقل ما إذا كان لديها اتجاه مرتبط بها أم لا.
- مثال، السرعة هي كمية عددية، لكن السرعة عبارة عن ناقل يحدد الاتجاه وكذلك الحجم، السرعة هي حجم السرعة، وتبلغ سرعة السيارة 40 ميلاً في الساعة، وقد يكون لها سرعة 40 ميلا في الساعة.
شاهد أيضًا: بحث شامل عن اللاسعات
كيفية رسم المتجهات
- يتم رسم متجه مثل سهم برأس وذيل، غالبًا ما يتم وصف حجم المتجه بطول السهم، يشير السهم في اتجاه المتجه، وتتم كتابة المتجهات بشكل عام كحروف داكنة، ويمكن أيضًا كتابتها بسهم.
- مثلًا إذا كان لاعب كرة القدم يركض 10 أميال في الساعة باتجاه منطقة النهاية، هذا هو ناقل لأنه يمثل حجم (10 ميل في الساعة) واتجاه (نحو منطقة النهاية)، ويمثل هذا المتجه سرعة لاعب كرة القدم.
- إذا كان حجم هذا المربع في الجانب الغربي من المبنى هو 14 قدم مكعب، هذا هو كمية عددية، قد تكون صعبة بعض الشيء لأنها تعطي موقع الصندوق في الجانب الغربي من المبنى، لكن هذا لا علاقة له باتجاه وحدة التخزين التي تبلغ مساحتها 14 قدمًا مكعبة.
- إذا كانت درجة حرارة الغرفة 15 درجة مئوية، هذه كمية عددية، حيث لا يوجد اتجاه.
- إذا كانت السيارة تسارع شمالا بمعدل 4 أمتار في الثانية مربعة، هذا هو ناقل لأنه يحتوي على الاتجاه والحجم، نعلم أيضًا أن التسارع عبارة عن كمية متجهة.
حقائق مثيرة للاهتمام حول المتجهات
- متجهات الوحدة عبارة عن متجهات بحجم 1، ويتم استخدامها لتحديد الاتجاه.
- عادة ما يتم منح الفضل في اختراع المتجهات للفيزيائي الأيرلندي ويليام روان هاميلتون.
- المتجهات والقيم الرقمية مهمة في العديد من مجالات الرياضيات والعلوم.
- يمكن تعريف المتجهات في فضاء ثنائي الأبعاد أو ثلاثي الأبعاد.
- تُستخدم رسومات المتجهات أحيانًا في أجهزة الكمبيوتر لأنه يمكن تغيير حجمها إلى حجم أكبر دون فقد أي جودة صورة.
- نشير إلى المتجهات باستخدام boldface كما هو الحال في a أو b، خاصة عند الكتابة باليد حيث لا يمكن للمرء الكتابة بسهولة بحروف داكنة، يشير الأشخاص أحيانًا إلى المتجهات باستخدام الأسهم كما هو الحال في a⃗ أو b⃗، أو يستخدمون علامات أخرى.
- لن نحتاج إلى استخدام الأسهم هنا، ونشير إلى حجم المتجه a بواسطة ∥a∥، عندما نريد الإشارة إلى رقم والتأكيد على أنه ليس متجهًا، فيمكننا استدعاء الرقم عدديًا، و سنشير إلى الأرقام القياسية المائلة، كما هو الحال في أ أو ب.
- يمكنك استكشاف مفهوم حجم واتجاه المتجه باستخدام التطبيق الصغير أدناه، لاحظ أن تحريك المتجه حوله لا يغير المتجه، لأن موضع المتجه لا يؤثر على الحجم أو الاتجاه، ولكن إذا قمت بتمديد أو قلب الموجه من خلال تحريك رأسه أو ذيله فقط، سيتغير الحجم أو الاتجاه.
أهمية المتجهات
- في الرياضيات، نفكر في النقاط والفضاء كمفاهيم تجريدية أساسية ونبني نموذجًا الفضاء باستخدام نظام الإحداثيات، نظام الإحداثيات ثلاثي الأبعاد هو ببساطة مجموعة لا حصر لها من الأعداد الثلاثية المرتبة بأرقام حقيقية (س، ص، ض) وتعطى كل نقطة بإحدى هذه الثلاثيات المرتبة، وتسمى إحداثيات النقطة.
- يتم استخدام المتجهات في العلوم لوصف أي شيء له اتجاه وحجم، وعادة ما يتم رسمها على شكل أسهم مدببة، يمثل طولها حجم الموجه، يعد تمريرة الظهير مثالاً جيدًا، لأنه يحتوي على اتجاه (عادة ما يكون في مكان أسفل الملعب) وحجم (مدى صعوبة إلقاء الكرة).
- خارج الحقل، يمكن استخدام المتجهات لتمثيل أي عدد من الأشياء المادية أو الظواهر، الرياح، على سبيل المثال، هي كمية متجهة، لأن لها في أي مكان محدد اتجاه (مثل الشمال الشرقي) وحجمه (على سبيل المثال، 45 كيلومترًا في الساعة).
- يمكنك وضع خريطة تدفق الهواء في أي وقت، ثم يمكن عن طريق رسم ناقلات الرياح لعدد من المواقع الجغرافية المختلفة.
- العديد من خصائص الأجسام المتحركة هي أيضا ناقلات، خذ على سبيل المثال كرة بلياردو التي تتدحرج عبر الطاولة. يصف ناقل سرعة الكرة حركته — يشير اتجاه سهم المتجه إلى اتجاه حركة الكرة، ويمثل طول المتجه سرعة الكرة.
- تكون المتجهات مفيدة عندما تريد التنبؤ بما سيحدث عندما يتصل كائنان، يمكن إضافة المتجهات معًا من خلال الانضمام إليها لإنشاء شكل يسمى متوازي الأضلاع والعثور على قطري متوازي الأضلاع، والقطر هو مجموع المتجهين اللذين يشكلان جوانب متوازي الأضلاع.
شاهد أيضًا: بحث عن برمجيات الحاسب الآلي
خاتمة بحث عن المتجهات في المستوى الإحداثي
وفي نهاية رحلتنا مع بحث عن المتجهات في المستوى الإحداثي، أتمنى أن ينال حديثنا إعجابكم، ومع فهم المتجهات، يمكن للاعبي البلياردو أن يتنبؤوا أين ستذهب كلتا الكرتين بعد الاصطدام، مما يسمح لهم بإغراق المزيد من الكرات المستهدفة مع إبقاء كرة الإشارات بأمان على الطاولة، والحصول على المزيد من الدرجات والأهداف.